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Alternation based algorithms (e.g., Remez' 2nd algorithm) for best Chebyshev
approximation depend on elements of trial alternants being well separated (in
Remez' case this helps guarantee not too badly conditioned [l1J linear systems of
equations associated with the Remez levelling equations). In non-degenerate cases,
a separation exists for alternants of nearby functions, but in ordinary best rational
approximation a coalescence of elements of alternants is exhibited in "near
degenerate" cases, suggesting difficulties for alternation based algorithms. © 1988

Academic Press, Inc.

Let [IX, fJ] be a finite interval and II II the Chebyshev norm on C[IX, Pl
Consider approximation by an alternating family [4; 8, p. 15ft"]
{F(A, .): A E P}, that is, a subset of C[IX,.8J such that F(A, .) possesses a
degree peA) so that F(A, .) is the best approximation to f if and only if
f - F(.4, . ) alternates p(A) times on [IX, fJJ. Denote the best approximation
to f (if it exists) by Tf

DEFINITION. A function g alternates I times on C[IX,.8] if there exists
{xo, ..., XI}' where IX ~ Xo <. ... <. XI ~ /3, such that

I g(x;)1 = II gil

g(x;) = (-1)/ g(xo) i=O, ..., I.

The set {xo, ..., XI} is called an alternant of g. The problem we consider is
the dependence of alternants of f - Tf on f

The following definition is taken from [4J.

DEFINITION. F is degenerate at A if every neighborhood of F(A,·)
contains an element of (F, P) of higher degree.
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THEOREM. Let Tf be non-degenerate and of degree n. Let Uk} --+ f and
{x~, ..., x~} be alternants offk - Tfk' Any accumulation point of(x~, ..., x~) is
an alternant off - Tf

Proof By Theorem 8 [4, p.106], {Tfk} --+ Tf uniformly, hence by
definition of degeneracy and the second corollary to Theorem 2 of [4], Tfk
is of degree n also for k sufficiently large, hence alternants are of the correct
length. Assume {x~} --+ x?, i = 0, ..., n. Now suppose that for some i and for
some e >°I(f - Tf)(x?} I < Ilf - Tfll - e. Then there is a neighbourhood N
of x? such that

l(f - TJ)(y)1 < Ilf - Tlll-e, yeN.

It follows that for all k sufficiently large,

But Ilfk - Tlkll --+ III - Tfll and x7 e N for all k sufficiently large, con
tradicting x7 being an extremum. Let (f - TJ)(xg) =u Ilf - Tfll then for
i = 0, ..., n (fk - Tfk )(xn = u( _1)i Ilfk - Tfkll for u = + or -, respectively,
for all k sufficiently large. Hence1- TI alternates on {xg, ..., x~}.

Remark. If (F, P) is varisolvent and Tfis of maximum degree, Tlk must
exist for all k sufficiently large [3].

For the rest of this paper consider a special case, approximation by
ordinary rational functions R;:,[rx, P]:

Best approximation was first characterized by Achieser [1; 7, p. 80; 9] in
terms of alternation and defect (= degeneracy) d(r) = min{n - aP(A, x),
m-8(A, x)}.

THEOREM. R is best to I if and only if1- R alternates n + m + 1- d(R)
times on [rx, Pl

LEMMA. Suppose {A k} --+Ao with Q(AO, ·)~O on [rx, P], and reducing
P(Ao,. )/Q(Ao,.) (if necessary) yields an element p/qeR;:,[rx, P] with
defect 1. Then there is a subsequence {AkUl} and an endpoint 01 [a, P] such
that {R(Ak(j)} converges uniformly to pjq on any closed subset of [ex, p]
excluding this endpoint.

Proof If Q(AO, .) has no zeros on [a, P] uniform convergence of the
full sequence follows on [a, Pl Assume Q(Ao, .) has a zero. As p is of exact
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degree n - 1 or q is of exact degree m - 1, P(Ao, .) and Q(AO, . ) can only
have a polynomial of degree 1 as a common factor. It must in fact be either
(x - O() or (fJ - x) for if (x - y) were a factor for y interior, (x - y)q would
not be ~O on [0(, fJ] and if (x-y) were a factor for y exterior, (x-y)q
would have no zeros on [0(, fJ]. Assume (x - O() is the common factor, then
Q(Ao, . ) > 0 on [y, fJ] for any y > iX, hence R(A k

, .) --+ P(Ao, . )/Q(AO, . ) =
p/q uniformly on [y, fJ].

THEOREM. Let Tf have defect 1. Let f - Tf have precisely n + m + 1
extrema and endpoints be extrema. Let {fk} --+ f and Tfk be non-degenerate.
Let {x~, ...,X~+m+l} be an alternant offk-Tfk' Then there exists a sub
sequence of {fk} such that the corresponding alternants have two points
tending to an endpoint.

Proof Let Tfk = R(Ak, .) then by [6], {A k} has an accumulation point
AO and P(AO, . )/Q(AO, .) is best to funder the constraint Q(A, .) ~ 0, hence
by reducing P(AO, . )fQ(Ao, . ) if necessary yields Tf By the lemma we can
assume without loss of generality that {R(A\ .)} --+ Tfuniformly on [y, fJ]
for any y > 0(. If the theorem were false, there would exist fJ > 0 such
that 0( + fJ < x~ for all k sufficiently large. Select y < fJ/2 then
Uk - Tfk} --+ U - Tf} uniformly on [0( + fJ, fJ]. As fk - Tfk alternates
n + m times on [0( + fJ, fJ] with amplitude Ilfk - Tfkll, f - Tf alternates
n + m times on [0( + fJ, fJ] with amplitude Ilf - Tfll. But this contradicts
our hypothesis on extrema of f - Tf

Remark. Coalescing of extrema leads to failure in alternation based
algorithms such as the second algorithm of Remez [8, p. 105fT] and
Maehly's second method [8, p. 113fT].

Remark. It is clear from the theorem that {Tfk} -1+ Tf uniformly on
[0(, fJ], which also follows from [10, p.324].

In view of the relationship between degeneracy, separation in alternants,
and uniform strong uniqueness (SU) constants [12], the question of a
possible uniform SU constant for the sequence {fk} of the last theorem
might be raised. The answer is that any sequence {gk} which has an
accumulation point f with a degenerate best approximation "#f (so that the
SU constant for f must be zero, a consequence of the discontinuity result of
Werner [9] and strong uniqueness implying a Lipschitz constant [2,
p. 82]) cannot have a uniform SU constant [10, Section 4].

Remark. If an endpoint were not an extremum of f - Tf, drawing a
diagram suggests that fk - Tfk could have an additional extremum there
and coalescing need not occur. In fact Cheney [2, p. 167] sketches
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construction of a set Ud -+ fo whose best approximation by RnO, 1] is
zero and f~ - Tf~ has alternant {O, 1, 1}.

In the discontinuity results of Werner [9], the requirement on the
number of extreme points of f - Tf is dropped, but only at the price of
restricting attention to one sequence Uk} -+ f

We have considered unweighted approximation, but arguments extend
without change to weighted approximation if weights are positive and
continuous (incorporate weights into f and R by multiplication).

The author is currently investigating approximation by powered
rationals pS/q', special cases of which were studied by Lau and by Kaufman
and Taylor. Whether comparable results hold for these is open.
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